β -delayed proton decays and spin assignments for ¹³³Sm and ¹⁴⁹Yb

S.-W. Xu^{1,a}, Y.-X. Xie¹, Z.-K. Li¹, F.-R. Xu², H.-L. Liu², Y.-B. Xing¹, B. Guo¹, J.-P. Xing¹, and C.-F. Wang¹

¹ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PRC

² Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 29 May 2006 / Revised: 24 August 2006 / Published online: 11 September 2006 – © Società Italiana di Fisica / Springer-Verlag 2006 Communicated by R. Krücken

Abstract. The proton-rich isotope ¹³³Sm was produced via the fusion evaporation reaction ⁴⁰Ca + ⁹⁶Ru. Its β -delayed proton decay was studied by p- γ coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, γ -transitions following the proton emission, as well as β -delayed proton branching ratios to the low-lying states in the grand-daughter nucleus were determined. Comparing the observed β -delayed proton branching ratios with statistical model calculations, the best agreement is found assuming that only one level with the spin of 3/2 in ¹³³Sm decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives. The configuration-constrained nuclear potential energy surfaces of ¹³³Sm were calculated using the Woods-Saxon-Strutinsky method, which suggests a 1/2⁻ ground state and a 5/2⁺ isomer with an excitation energy of 120 keV. Therefore, the simple (EC+ β^+) decay scheme of ¹³³Sm in Eur. Phys. J. A **11**, 277 (2001) has been revised. In addition, our previous experimental data on the β -delayed proton decay of ¹⁴⁹Yb reported in Eur. Phys. J. A **12**, 1 (2001) was also analyzed using the same method. The spin-parity of ¹⁴⁹Yb is suggested to be $1/2^-$.

PACS. 23.40.Hc Relation with nuclear matrix elements and nuclear structure – 21.10.Hw Spin, parity, and isobaric spin – 24.10.Pa Thermal and statistical models – 27.60 + j 90 $\leq A \leq 149$

The β -delayed proton (β p) decay of ¹³³Sm was first studied by Bogdanov et al. [1] at Dubna in 1977. Its halflife was determined to be 3.2 ± 0.4 s. The spin and parity of 133 Sm was suggested to be $5/2^+$ only based on fitting the measured energy spectrum of β -delayed protons with statistical-model calculations. Experimental data on β p decay of ¹³³Sm measured by Wilmarth *et al.* [2] using an ISOL facility at LBL was reported in 1985. The half-life of 133 Sm was determined to be 2.8 ± 0.2 s. A 213 keV γ -ray following the β p decay of ¹³³Sm was observed, which corresponds to the transition between the lowest-energy 2^+ state to 0^+ ground state in the proton daughter nucleus ¹³²Nd. It was pointed out in [2] that according to a statistical-model calculation the branching ratio to 4⁺ state in ¹³²Nd should be 12%, if the spin-parity of ¹³³Sm were $5/2^+$. However, a 389 keV γ -ray, *i.e.* the $4^+ \rightarrow 2^+$ transition in ¹³²Nd with an appropriate intensity was not seen. Therefore, the spin-parity assignment of $5/2^+$ to ¹³³Sm is less certain. On the other hand, only the two γ -rays of 369.6 and 156.8 keV with a halflife of 3.7 ± 0.7 s were assigned to the (EC+ β^+) decay by Breitenbach et al. [3] in 1993. Later a simple $(EC+\beta^+)$

decay scheme was proposed by our group [4] in 2001. According to the level scheme of 133 Pm given by Regan *et* al. [5], the 214.5 keV + X, 84.5 keV + X and 0.0 keV + X energy levels in our simple decay scheme (see fig. 1 in [4]) were assigned as $9/2^+$, $7/2^+$ and $5/2^+$, respectively. However, the level scheme of ¹³³Pm was improved and revised by Galindo-Uribarri et al. [6], and the spins and parities of the above three energy levels were assigned as $7/2^+$, $5/2^+$ and $3/2^+$ instead in ref. [6]. Of course, a similar revision should be made in our simple decay scheme. It should be noted that the β -delayed γ lines in our simple decay scheme could be separated into two isolated groups. The first group, including the 84.5 keV γ line, which corresponds to the $5/2^+ \rightarrow 3/2^+$ transition in the daughter nucleus 133 Pm, could be from a $5/2^+$ state of 133 Sm with a half-life of 2.8 ± 0.5 s. The half-life of another group which includes the 369.6 and 156.8 keV γ -rays was determined to be 3.4 ± 0.5 s, and seems different from the first one.

In the present work, a new study on β p decay of ¹³³Sm is reported, and the spin-parity of ¹³³Sm is proposed. Comparing the β p decay and β -delayed γ decay, the simple (EC+ β^+) decay scheme of ¹³³Sm in [4] is revised. In addition, our previous experimental data on β p decay of

^a e-mail: xsw@lzb.ac.cn

Fig. 1. The measured γ - and X-ray spectrum in coincidence with delayed protons of 2.5 to 6.0 MeV in the reaction ${}^{40}\text{Ca} + {}^{96}\text{Ru}$. The intense peaks are labeled by their energies in keV and their β p precursors.

 $^{149}{\rm Yb}$ [7] was analyzed with statistical-model calculations, and a spin-parity of $^{149}{\rm Yb}$ is proposed.

The experiment described here was carried out at the Sector-Focusing Cyclotron in the Institute of Modern Physics, Lanzhou, PRC. A schematic view of the experimental set-up is shown in fig. 1 of ref. [8]. A 232 MeV ${}^{40}\text{Ca}^{12+}$ beam entered a target chamber filled with 1 bar helium through a $1.89 \,\mathrm{mg/cm^2}$ thick Havar window. After traversing a layer of helium gas and an aluminium degrader, the beam finally hit on a 96 Ru target (85% enriched) with a thickness of about $1.4 \,\mathrm{mg/cm^2}$. The beam energy in the middle of the target was 180 MeV, and the beam intensity was about 40 pnA. The ¹³³Sm was produced via the 2pn evaporation channel. We used a heliumjet in combination with a tape transport system to periodically move the radioactivity into a shielded counting room, using $PbCl_2$ at 430 °C as aerosol. The length of the capillary is about 6 m. The collection time, tape moving time, waiting time, and accumulation time was adjusted to 1.60, 0.16, 0.16, and 1.44s, respectively. In order to study the βp decay, proton-gamma coincidence measurements were carried out [8–10]. Two $570 \,\mathrm{mm^2} \times 350 \,\mu\mathrm{m}$, totally depleted silicon surface barrier detectors located on opposite sides of the movable tape were used to detect the protons. Behind each silicon detector a coaxial HpGe(GMX) was placed to observe γ - and X-ray. The energy and time spectra of γ - and X-rays as well as protons were recorded in both single and coincidence modes.

The observed γ - and X-ray spectrum gated on β delayed protons of 2.5–6.0 MeV is shown in fig. 1. The intense peaks, except 511 keV and X-rays, are labeled with their energies in keV and their β p precursors. In particular, the most intense 213 keV γ line was assigned to the transition between the lowest-energy 2_1^+ state and 0^+ ground state in the proton daughter nucleus ¹³²Nd [11] following the β p decay of ¹³³Sm, while the 398, 611 and 824 keV γ lines were assigned to the $4^+ \rightarrow 2_1^+, 2_2^+ \rightarrow 2_1^+$ and $2_2^+ \rightarrow 0^+$ transitions in ¹³²Nd [11], respectively.

The energy spectrum of β -delayed protons gated on the 213 keV γ line is shown in fig. 2, while the inset displays

Fig. 2. The energy spectrum of β -delayed protons gated on the 213 keV γ line in ¹³³Sm. The histogram is the experimental result, while the curves stand for the statistical-model calculations. The inset displays the decay curve of the 213 keV line coincident with β -delayed protons.

Table 1. Calculated and experimental relative branching ratios $(b_{\beta p})$ to different final states in ¹³²Nd from the βp decay of ¹³³Sm, assuming different values of the initial spin and parity of ¹³³Sm. The experimental relative $b_{\beta p}$ leading to the 2_1^+ state was normalized to 50.

Initial spin	Relative $b_{\beta p}$ to the final states (%)			
and parity	G. S.	$213\mathrm{keV}$	$611\mathrm{keV}$	$824\mathrm{keV}$
of 133 Sm	(0^+)	(2_1^+)	(4^{+})	(2_2^+)
$1/2^{-}$	56.6	39.6	0.5	3.3
$1/2^+$	51.3	43.5	1.1	4.0
$3/2^{-}$	37.7	54.0	3.7	4.7
$3/2^+$	38.3	54.1	2.4	5.2
$5/2^{-}$	22.5	60.9	11.1	5.5
$5/2^{+}$	15.8	64.2	13.7	6.3
Exp. Value		50 ± 4	3.0 ± 0.5	5 ± 1

the decay curve of the 213 keV γ line when gated on the β -delayed protons. From the decay curve the "average" half-life of ¹³³Sm was extracted to be 3.2 ± 0.7 s.

The relative branching ratios $(b_{\beta p})$ to different final states in the proton daughter nucleus ¹³²Nd observed in the β p decay of ¹³³Sm for various values of the initial spin and parity of ¹³³Sm and the proton energy spectra were calculated using a revised statistical model [12,13]. The calculated results are listed in table 1 together with the experimental values, which were determined by means of the relative intensities of the correspondent γ lines in fig. 1. Unfortunately, we could not obtain the experimental $b_{\beta p}$ to the ground state in ¹³²Nd because of the restriction of the p- γ coincidence method. Comparing the calculated branching ratios with the experimental values, the closest agreement is found assuming that only one level with the spin of 3/2 in ¹³³Sm decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives.

Fig. 3. Calculated nuclear potential energy surfaces of $1/2^-$ ground state (a) and $5/2^+$ isomer (b) for ¹³³Sm.

Fig. 4. Revised simple $(EC+\beta^+)$ decay scheme of ¹³³Sm.

To shed more light on the ground-state properties of 133 Sm, the configuration-constrained nuclear potential energy surface (NPES) (fig. 3) was calculated by using the Woods-Saxon-Strutinsky method [14]. If the potential energy of ¹³³Sm is minimum, its shape has to be prolate, and the last neutron in ¹³³Sm is not able to occupy the obital of $\nu 3/2^+$ [402]. Actually, a minimum at deformation parameters $\beta_2 = 0.327$ and $\gamma = -0.005^{\circ}$ was found, which corresponds to the configuration $\nu 1/2^{-541}$ other than $\nu 3/2^+[402]$, and the second found out minimum at $\beta_2 = 0.291$ and $\gamma = 0.000^\circ$ corresponds to the configuration of $\nu 5/2^+$ [402]. The excitation energy of the minimum for the configuration of $\nu 5/2^+$ [402] is only 120 keV higher than that for the configuration of $\nu 1/2^{-}$ [541]. In addition, the calculated energy spectra of β -delayed protons fit the experimental data well assuming two decaying levels in ¹³³Sm with spins and parities $1/2^-$ and $5/2^+$ (see fig. 2). Therefore, the spins and parities of the two decaying levels in 133 Sm were suggested to be $1/2^-$ (ground state) and $5/2^+$ (isomeric state). Comparing the calculated $b_{\beta p}$ and the experimental values, the relative decay intensities of $1/2^-$ state and $5/2^+$ state are ~ 75% and ~ 25%, respectively. Finally, the simple $(EC+\beta^+)$ decay scheme of $^{1\overline{3}3}$ Sm in [4] should be separated into two components and revised in fig. 4. The first component of the $(EC+\beta^+)$ decay with the half-life of 2.8 s, including the 84.5 keV γ line,

Table 2. Calculated and experimental relative branching ratios $(b_{\beta p})$ to different final states in ¹⁴⁸Er from the β p decay of ¹⁴⁹Yb, assuming different values of the initial spin and parity of ¹⁴⁹Yb. The experimental relative $b_{\beta p}$ leading to the 2⁺ state was normalized to 50.

Initial spin	Relative $b_{\beta p}$ to the final states (%)			
and parity	G. S.	$647\mathrm{keV}$	$1524\mathrm{keV}$	
of 149 Yb	(0^+)	(2^+)	(4^{+})	
$1/2^{-}$	83.0	16.8	0.2	
$1/2^+$	77.7	22.1	0.2	
$3/2^{-}$	70.0	29.3	0.7	
$3/2^+$	70.7	28.8	0.5	
$5/2^{-}$	55.3	42.2	2.4	
$5/2^{+}$	49.8	47.2	3.0	
Exp. Value		50	≤ 1	

comes from the 5/2⁺ isomeric state in ¹³³Sm, while the second one with a half-life of 3.4 s, including the 369.6 and 156.8 keV γ lines, comes from the 1/2⁻ ground state. By the way, the "average" half-life of the 213 keV γ line gated on β -delayed protons is 3.2 s, somewhere between 2.8 and 3.4 s, because of the contributions of the two components.

The experimental data of βp decay of ¹⁴⁹Yb was reported for the first time by our group [7] in 2001. The relative $b_{\beta p}$ to different final states in the proton daughter nucleus ¹⁴⁸Er from the βp decay of ¹⁴⁹Yb for various values of the initial spin and parity of ¹⁴⁹Yb were calculated with the revised statistical model. The calculated $b_{\beta p}$ are listed in table 2 together with the experimental values. Comparing the calculated $b_{\beta p}$ with the experimental values, the initial spin and parity of ¹⁴⁹Yb could be 1/2 or 3/2. Recently, the configuration-constrained NPES of ¹⁴⁹Yb was calculated using the Woods-Saxon-Strutinsky method. A minimum with $\beta_2 = 0.166$ and $\gamma = 60^{\circ}$ was found (fig. 5), which corresponds to the configuration of $\nu 1/2^{-}$ [521]. In addition, the βp energy spectrum of ¹⁴⁹Yb

Fig. 5. Calculated nuclear potential energy surface for ¹⁴⁹Yb.

Fig. 6. The energy spectrum of β -delayed protons gated on the 647 keV γ line in ¹⁴⁹Yb. The histogram is the experimental result, while the curve stands for the statistical-model calculation with initial spin and parity of $1/2^{-}$.

gated on the 647 keV γ -ray was calculated using the revised statistical model, assuming the spin and parity of ¹⁴⁹Yb to be $1/2^-$. The calculated spectrum fitted the experimental data very well (see fig. 6). Finally, the ground-state spin-parity of ¹⁴⁹Yb is proposed to be $1/2^-$.

This work was supported by the National Natural Science Foundation of China (10375078 and 10475002).

References

- D.D. Bogdanov, A.V. Demyanov, V.A. Karnaukhov *et al.*, Nucl. Phys. A **275**, 229 (1977).
- P.A. Wilmarth, J.M. Nitschke, J.M. Lemmertz *et al.*, Z. Phys. A **321**, 179 (1985).
- J. Breitenbach, R. Braga, J.L. Wood et al., in 6th International Conference on Nuclei Far From Stability / 9th International Conference on Atomic Masses and Fundamental Constants, 1992, Inst. Phys. Conf. Series, No. 132, 575 (1993).
- S.-W. Xu, Y.-X. Xie, X.-D. Wang *et al.*, Eur. Phys. J. A 11, 277 (2001); 12, 375 (2001) (E).
- 5. P.H. Regan et al., Nucl. Phys. A 533, 476 (1991).
- A. Galindo-Uribarri, D. Ward, H.R. Andrews *et al.*, Phys. Rev. C 54, 1057 (1996).
- S.-W. Xu, Z.-K. Li, Y.-X. Xie *et al.*, Eur. Phys. J. A **12**, 1 (2001).
- S.-W. Xu, Z.-K. Li, Y.-X. Xie *et al.*, Phys. Rev. C 71, 054318 (2005).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Phys. Rev. C **60**, 061302(R) (1999).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Z. Phys. A **356**, 227 (1996).
- Yu Khazov, A.A. Rodinov, S. Sakharov *et al.*, Nucl. Data Sheets **104**, 497 (2005).
- P. Hornshoj, K. Wilsky, P.G. Hansen *et al.*, Nucl. Phys. A 187, 609 (1972).
- 13. J.C. Hardy, Phys. Lett. B 109, 242 (1982).
- W. Nazarewicz, J. Dudek, R. Bengtsson *et al.*, Nucl. Phys. A **435**, 397 (1985).